Applying subclustering and Lp distance in Weighted K-Means with distributed centroids
نویسندگان
چکیده
We consider the weighted K-Means algorithm with distributed centroids aimed at clustering data sets with numerical, categorical and mixed types of data. Our approach allows given features (i.e., variables) to have different weights at different clusters. Thus, it supports the intuitive idea that features may have different degrees of relevance at different clusters. We use the Minkowski metric in a way that feature weights become feature re-scaling factors for any considered exponent. Moreover, the traditional Silhouette clustering validity index was adapted to deal with both numerical and categorical types of features. Finally, we show that our new method usually outperforms traditional K-Means as well as the recently proposed WK-DC clustering algorithm.
منابع مشابه
Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملA New Approach for Image Segmentation using Pillar-Kmeans Algorithm
This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pi...
متن کاملOptimizing K-Means by Fixing Initial Cluster Centers
Data mining techniques help in business decision making and predicting behaviors and future trends. Clustering is a data mining technique used to make groups of objects that are somehow similar in characteristics. Clustering analyzes data objects without consulting a known class label or category i.e. it is an unsupervised data mining technique. Kmeans is a widely used partitional clustering al...
متن کاملDivisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering
To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...
متن کاملPseudo-centroid clustering
Pseudo-Centroid Clustering replaces the traditional concept of a centroid expressed as a center of gravity with the notion of a pseudo-centroid (or a coordinate free centroid) which has the advantage of applying to clustering problems where points do not have numerical coordinates (or categorical coordinates that are translated into numerical form). Such problems, for which classical centroids ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 173 شماره
صفحات -
تاریخ انتشار 2016